Issue 12, 2010

Microdevice to capture colon crypts for in vitro studies

Abstract

There is a need in biological research for tools designed to manipulate the environment surrounding microscopic regions of tissue. In the current work, a device for the oriented capture of an important and under-studied tissue, the colon crypt, has been designed and tested. The objective of this work is to create a BioMEMs device for biological assays of living colonic crypts. The end goal will be to subject the polarized tissue to user-controlled fluidic microenvironments in a manner that recapitulates the in vivo state. Crypt surrogates, polymeric structures of similar dimensions and shape to isolated colon crypts, were used in the initial design and testing of the device. Successful capture of crypt surrogates was accomplished on a simple device composed of an array of micron-scale capture sites that enabled individual structures to be captured with high efficiency (92 ± 3%) in an ordered and properly oriented fashion. The device was then evaluated using colon crypts isolated from a murine animal model. The capture efficiency attained using the fixed biologic sample was 37 ± 5% due to the increased variability of the colon crypts compared with the surrogate structures, yet 94 ± 3% of the captured crypts were properly oriented. A simple approach to plug the remaining capture sites in the array was performed using inert glass beads. Blockage of unfilled capture sites is an important feature to establish a chemical gradient across the arrayed crypts. A chemical concentration gradient (Cluminal/Cbasal > 10) was demonstrated across the arrayed crypts for over 8 h. Finally unfixed colon crypts were demonstrated to be effectively captured by the micromesh array and to remain viable on the capture sites at 5 h after mouse sacrifice. The present study demonstrates the feasibility and potential for rationally microengineered technologies to address the specific needs of the biologic researcher.

Graphical abstract: Microdevice to capture colon crypts for in vitro studies

Supplementary files

Article information

Article type
Paper
Submitted
05 Jan 2010
Accepted
12 Mar 2010
First published
07 Apr 2010

Lab Chip, 2010,10, 1596-1603

Microdevice to capture colon crypts for in vitro studies

Y. Wang, R. Dhopeshwarkar, R. Najdi, M. L. Waterman, C. E. Sims and N. Allbritton, Lab Chip, 2010, 10, 1596 DOI: 10.1039/B927316F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements