The advent of a carbon nanotube liquid-gated transistor (LGFET) for biosensing applications allows the possibility of real-time and label-free detection of biomolecular interactions. The use of an aqueous solution as dielectric, however, has traditionally restricted the operating gate bias (VG) within |VG| < 1 V, due to the electrolysis of water. Here, we propose pulsed-gating as a facile method to extend the operation window of LGFETs to |VG| > 1 V. A comparison between simulation and experimental results reveals that at voltages in excess of 1 V, the LGFET sensing mechanism has a contribution from two factors: electrostatic gating as well as capacitance modulation. Furthermore, the large IDS drop observed in the |VG| > 1 V region indicates that pulsed-gating may be readily employed as a simple method to amplify the signal in the LGFET and pushes the detection limit down to attomolar concentration levels, an order of magnitude improvement over conventionally employed DC VG biasing.