Issue 2, 2010

Selective trapping and concentration of nanoparticles and viruses in dual-height nanofluidic channels

Abstract

Nanofluidic systems offer advantages for chemical analysis, including small sample volumes, size-selective particle trapping, sample concentration and the ability to separate and detect single molecules. Such systems can be fabricated using planar nanochannels, which rely on standard photolithographic techniques. Nanochannel fluid flow can be driven by capillary action, which benefits from simple injection and reasonably high flow rates. We demonstrate an analysis chip fabricated with planar nanochannels that consist of two adjoining segments of different heights. When nano-analytes elute through the channel, they become physically trapped when the channel dimensions shrink below the size of the particles. We demonstrate the capability of these devices to trap and concentrate by using the following: 120-nm polymer beads, 30-nm polymer beads, Herpes simplex virus 1 capsids, and hepatitis B virus capsids. Each species was fluorescently labeled and its resulting fluorescent signal was detected using a cooled CCD camera. We show how the signal-to-noise ratio of trapped analyte intensity varies linearly with analyte concentration. The goal of this work is to eventually perform size-based fractionation of a variety of nanoparticles, including biomolecules such as proteins.

Graphical abstract: Selective trapping and concentration of nanoparticles and viruses in dual-height nanofluidic channels

Supplementary files

Article information

Article type
Paper
Submitted
14 Aug 2009
Accepted
19 Oct 2009
First published
18 Nov 2009

Lab Chip, 2010,10, 173-178

Selective trapping and concentration of nanoparticles and viruses in dual-height nanofluidic channels

M. N. Hamblin, J. Xuan, D. Maynes, H. D. Tolley, D. M. Belnap, A. T. Woolley, M. L. Lee and A. R. Hawkins, Lab Chip, 2010, 10, 173 DOI: 10.1039/B916746C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements