A novel detection system that combines the merits of open-sandwich (OS) enzyme-linked immunoadsorbent assay (ELISA) and a microfluidic sensor chip system, and which enables rapid and noncompetitive immunodetection of small antigens of less than 1000 in molecular weight, has been proposed. Equipped with a sensitive thermal lens microscope, a minute amount of the carboxyl-terminal peptide of human osteocalcin (BGP), a biomarker for bone metabolism, was quantified utilizing antigen-dependent stabilization of an antibody variable region (OS principle). In a short analysis time (∼12 min), we could attain a detection limit comparable to that of the microplate-based OS ELISA (1 μg L−1). In addition, the effects of several pretreatments for serum-derived samples were investigated: an albumin absorption resin, addition of a protease inhibitor cocktail and heat treatment. Each pretreatment was found to be effective. Consequently, intrinsic BGP and its fragments could be detected in healthy human serum with a superior detection limit and working range compared to those of the conventional competitive ELISA method.
You have access to this article
Please wait while we load your content...
Something went wrong. Try again?