Issue 16, 2010

Highly color-stable solution-processed multilayer WOLEDs for lighting application

Abstract

White organic and especially polymeric light emitting devices (WPLEDs) have received particular attention due to their potential to provide cost-effective and simply manufactured solid-state light sources. The largest acceptable variation of Commission Internationale de L'Eclairage (CIE) coordinates is typically specified as Δx,y < 0.01 for general illumination purposes and even down to Δx,y < 0.005 by the automotive industry. Over the last few years great progress has been made regarding color-stability of OLEDs. In the first publications large color shifts of about Δx,y = 0.2,0.1 were reported. Current publications present devices with CIE variations as small as Δx,y = 0.02,0.02 or better, even for polymeric OLEDs. Here, we present a highly color-stable white fluorescent multilayer OLED consisting of a two-layer (yellow EML/blue EML) stack. The devices show white emission with CIE values of 0.324,0.346. Because of their extremely well-balanced electron and hole distribution, these devices show nearly no change in their CIE values (± 0.009,0.006) between 100 and 10 000 nits. Brightness in that range can be obtained at low voltages (4–8 V), at the same time providing a high efficiency of 6 cd A−1. In addition, due to the broad spectral width of the emission the devices exhibit a color rendering index of 84. This value complies favourably with actual demands for ambient lighting. The extrapolated half-brightness lifetime at an initial brightness of 100 cd m−2 exceeds 1000 h. All systems include the crosslinking of each layer either photo-chemically or thermally to enable the solution-processed complex multilayer OLED-structures.

Graphical abstract: Highly color-stable solution-processed multilayer WOLEDs for lighting application

Article information

Article type
Paper
Submitted
27 Nov 2009
Accepted
08 Feb 2010
First published
05 Mar 2010

J. Mater. Chem., 2010,20, 3301-3306

Highly color-stable solution-processed multilayer WOLEDs for lighting application

A. Köhnen, M. Irion, M. C. Gather, N. Rehmann, P. Zacharias and K. Meerholz, J. Mater. Chem., 2010, 20, 3301 DOI: 10.1039/B924968K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements