Jump to main content
Jump to site search

Issue 8, 2010
Previous Article Next Article

Spontaneously formed porous and composite materials

Author affiliations


In recent years, a number of routes to porous materials have been developed which do not involve the use of pre-formed templates or structure-directing agents. These routes are usually spontaneous, meaning they are thermodynamically downhill. Kinetic control, deriving from slow diffusion of certain species in the solid state, allows metastable porous morphologies rather than dense materials to be obtained. While the porous structures so formed are random, the average architectural features can be well-defined, and the porosity is usually highly interconnected. The routes are applicable to a broad range of functional inorganic materials. Consequently, the porous architectures have uses in energy transduction and storage, chemical sensing, catalysis, and photoelectrochemistry. This is in addition to more straightforward uses deriving from the pore structure, such as in filtration, as a structural material, or as a cell-growth scaffold. In this feature article, some of the methods for the creation of porous materials are described, including shape-conserving routes that lead to hierarchical macro/mesoporous architectures. In some of the preparations, the resulting mesopores are aligned locally with certain crystallographic directions. The coupling between morphology and crystallography provides a macroscopic handle on nanoscale structure. Extension of these routes to create biphasic composite materials are also described.

Graphical abstract: Spontaneously formed porous and composite materials

Back to tab navigation

Publication details

The article was received on 31 Jul 2009, accepted on 29 Oct 2009 and first published on 10 Dec 2009

Article type: Feature Article
DOI: 10.1039/B915613E
Citation: J. Mater. Chem., 2010,20, 1413-1422

  •   Request permissions

    Spontaneously formed porous and composite materials

    S. A. Corr, D. P. Shoemaker, E. S. Toberer and R. Seshadri, J. Mater. Chem., 2010, 20, 1413
    DOI: 10.1039/B915613E

Search articles by author