Issue 11, 2010

Compensation for matrix effects on ICP-OES by on-line calibration methods using a new multi-nebulizer based on Flow Blurring® technology

Abstract

In this work, on-line calibration methods were applied for compensation for matrix effects in Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) using three novel multiple sample introduction systems based on Flow Blurring® technology. The methods were compared with conventional calibration methods, using a Conikal nebulizer and a cyclonic spray chamber (i.e., Standard Sample Introduction (SSI) system). Experiments were carried out with synthetic samples containing different matrices. The total liquid flow through the multinebulizers was 400 μL min−1 whereas in the SSI system it was 1000 μL min−1. One type of calibration method tested was external calibration. By using this calibration method, the mean of absolute values corresponding to the relative error values of different multiple sample introduction systems and all the matrices was 14% and uncertainty was 0.6%. When on-line internal standard calibration was used, the mean relative error value dropped to 3% and uncertainty was 0.6%. With on-line standard addition calibration, relative error values went down to 2%. However, uncertainty values increased to 2% in all cases. With all the calibration methodologies, the accuracy and uncertainty of the obtained results were very similar for both standard and multiple sample introduction systems. The main difference was a significant reduction in resource consumption (i.e., samples, reagents and time) when multinebulization systems were used. Sensitivity, precision and limits of detection were evaluated for the different Flow Blurring® based systems and SSI system. For most of the emission lines evaluated, all the Flow Blurring® based systems gave higher precision values and lower limits of detection than SSI system. A certified reference material (Estuarine Water, LGC6016), without prior sample treatment (i.e., dilution), was analyzed using external calibration with the SSI system and on-line standard addition calibration with Flow Blurring® based systems. The certified reference material analysis gave relative error values ranging between +20% and −30% for the SSI system, and between +4% and −2% for Flow Blurring® based systems.

Graphical abstract: Compensation for matrix effects on ICP-OES by on-line calibration methods using a new multi-nebulizer based on Flow Blurring® technology

Supplementary files

Article information

Article type
Paper
Submitted
01 Apr 2010
Accepted
22 Jul 2010
First published
13 Sep 2010

J. Anal. At. Spectrom., 2010,25, 1724-1732

Compensation for matrix effects on ICP-OES by on-line calibration methods using a new multi-nebulizer based on Flow Blurring® technology

M. Á. Aguirre, N. Kovachev, B. Almagro, M. Hidalgo and A. Canals, J. Anal. At. Spectrom., 2010, 25, 1724 DOI: 10.1039/C004854B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements