Issue 2, 2010

Ionic liquid tolerant hyperthermophilic cellulases for biomass pretreatment and hydrolysis

Abstract

One of the main barriers to the enzymatic hydrolysis of cellulose results from its highly crystalline structure. Pretreating biomass with ionic liquids (IL) increases enzyme accessibility and cellulose recovery through precipitation with an anti-solvent. For an industrially feasible pretreatment and hydrolysis process, it is necessary to develop cellulases that are stable and active in the presence of small amounts of ILs co-precipitated with recovered cellulose. However, a significant decrease in cellulase activity in the presence of trace amounts of ILs has been reported in the literature, necessitating extensive processing to remove residual ILs from the regenerated cellulose. Towards that end, we have investigated the stability of hyperthermophilic enzymes in the presence of the IL 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]) and compared it to the industrial benchmark Trichoderma viride (T. viride) cellulase. The endoglucanase from a hyperthermophilic bacterium, Thermatoga maritima, and a hyperthermophilic archaeon, Pyrococcus horikoshii, were over expressed in E. coli and purified to homogeneity. Under their optimum conditions, both hyperthermophilic enzymes showed significantly higher [C2mim][OAc] tolerance than T. viride cellulase. Using differential scanning calorimetry we determined the effect of [C2mim][OAc] on protein stability and our data indicates that higher concentrations of IL correlated with lowered protein stability. Both hyperthermophilic enzymes were active on [C2mim][OAc] pretreated Avicel and corn stover. Furthermore, these enzymes can be recovered with little loss in activity after exposure to 15% [C2mim][OAc] for 15 h. These results demonstrate the potential of using IL-tolerant extremophilic cellulases for hydrolysis of IL-pretreated lignocellulosic biomass, for biofuel production.

Graphical abstract: Ionic liquid tolerant hyperthermophilic cellulases for biomass pretreatment and hydrolysis

Supplementary files

Article information

Article type
Paper
Submitted
11 Aug 2009
Accepted
11 Nov 2009
First published
21 Jan 2010

Green Chem., 2010,12, 338-345

Ionic liquid tolerant hyperthermophilic cellulases for biomass pretreatment and hydrolysis

S. Datta, B. Holmes, J. I. Park, Z. Chen, D. C. Dibble, M. Hadi, H. W. Blanch, B. A. Simmons and R. Sapra, Green Chem., 2010, 12, 338 DOI: 10.1039/B916564A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements