Volume 147, 2010

An experimental and theoretical investigation of the competition between chemical reaction and relaxation for the reactions of 1CH2 with acetylene and ethene: implications for the chemistry of the giant planets

Abstract

The temperature dependence of the branching ratios for H atom production from the reactions of the first excited state of methylene (a1A11CH2) with acetylene and ethene have been measured at ∼1 Torr total pressure and temperatures of 195, 250 and 298 K by monitoring the production of H atoms using laser induced fluorescence, comparing the signal to that observed from a calibration reaction. For the reaction with acetylene the yield of H increases from 0.28 (195 K) to 0.53 (250 K) to 0.88 at 298 K. The H atom yield from the reaction of 1CH2 with ethene shows similar behaviour, the yields being 0.35 (195 K), 0.51 (250 K) and 0.71 (298 K). The co-products, propargyl (C3H3) and allyl (C3H5) are formed from the dissociation of chemically activated C3H4 and C3H6 intermediates respectively, and are important species in the formation of higher hydrocarbons, including benzene, in the atmospheres of the outer planets and Titan. H atom production is in competition with electronic relaxation to form ground state methylene (X3B1, 3CH2) and collisional stabilization to form C3H4 and C3H6. Master equation calculations have been carried out to demonstrate that for the reaction of 1CH2 with acetylene, collisional stabilization is insignificant under experimental conditions and hence the balance of reaction is due to electronic relaxation. Non-adiabatic transition state theory has been applied to the reaction of 1CH2 with acetylene. The calculations show reasonable agreement with experiment, generally being within the combined errors, and reproduce the negative temperature dependence for electronic relaxation. The implications of the temperature dependence of the absolute rate coefficients for 1CH2 reactions with inert gases, hydrogen, acetylene and ethene and of the branching ratios between chemical reaction and electronic relaxation are discussed.

Article information

Article type
Paper
Submitted
10 Mar 2010
Accepted
12 Apr 2010
First published
04 Aug 2010

Faraday Discuss., 2010,147, 173-188

An experimental and theoretical investigation of the competition between chemical reaction and relaxation for the reactions of 1CH2 with acetylene and ethene: implications for the chemistry of the giant planets

K. L. Gannon, M. A. Blitz, C. Liang, M. J. Pilling, P. W. Seakins, D. R. Glowacki and J. N. Harvey, Faraday Discuss., 2010, 147, 173 DOI: 10.1039/C004131A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements