Issue 7, 2010

Mesoporous TiO2 with high packing density for superior lithiumstorage

Abstract

Micrometre-sized mesoporous materials have characteristic grains as well as pores nearly in the same scale. Electrodes of mesoporous materials for lithium batteries have short transport lengths for Li+ ions due to their nano-sized grains (10–20 nm), and easy access for electrolytes due to their nanopores (5–10 nm). Such mesoporous materials have high packing densities unlike nanopowders, nanowires, nanorods and nanotubes. Despite such advantages, electronic conduction over micrometre-sized particles limits the rate performance of mesporous materials. Occasionally counductive thin layers (2–5 nm) of carbon or RuO2 have been used to overcome such kinetic limitations and to achieve high storage performances. In this manuscript, we present a simple approach for the synthesis of mesoporous TiO2 anatase using a soft-template method, which shows superior storage performance without such conductive surface layers. Various cationic surfactants with different chain lengths have been selected for this investigation to assist the formation of the mesoporous TiO2 structure. Among these, cetyl trimethylammoniumbromide templated C16-TiO2 has the highest surface area of 135 m2 g−1 and reversible capacity of 288, 220, 138,134 and 107 mAh g−1 at 0.2, 1, 5, 10 and 30C respectively. The storage performance of the as-synthesized mesoporous TiO2 is nearly five times better than the commercially available TiO2 nanopowder. The packing density of meso-TiO2 is found to be 6.6 times higher than the TiO2 nanopowder. In addition, battery testing using mesoporous TiO2 electrodes without the 15% carbon additive exhibits nearly the same performance at low rate as the meso-TiO2 with carbon additives. These exciting results suggest a facile conduction path for electrons, a unique character of micrometre-sized mesoporous TiO2 with highly interconnected nanograins of 15–20 nm.

Graphical abstract: Mesoporous TiO2 with high packing density for superior lithium storage

Supplementary files

Article information

Article type
Paper
Submitted
25 Feb 2010
Accepted
18 May 2010
First published
16 Jun 2010

Energy Environ. Sci., 2010,3, 939-948

Mesoporous TiO2 with high packing density for superior lithium storage

K. Saravanan, K. Ananthanarayanan and P. Balaya, Energy Environ. Sci., 2010, 3, 939 DOI: 10.1039/C003630G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements