The crystal structures of double-decker single-molecule magnets (SMMs) LnPc2 (Ln = Tb(III) and Dy(III); Pc = phthalocyanine) and non-SMM YPc2 were determined by using single crystal X-ray diffraction analysis. The compounds are isomorphous to each other. The compounds have metal-centers (M3+ = Tb, Dy, and Y) sandwiched by two Pc ligands via eight isoindole-nitrogen atoms in a square-antiprism fashion. The twist angle between the two Pc ligands is 41.4°. Scanning tunneling microscopy (STM) was used to investigate the compounds adsorbed on a Au(111) surface, deposited by using thermal evaporation in ultra-high vacuum. Both MPc2 with eight-lobes and MPc with four-lobes, which has lost one Pc ligand, were observed. In the scanning tunneling spectroscopy (STS) images of TbPc molecules at 4.8 K, a Kondo peak with a Kondo temperature (TK) of ∼250 K was observed near the Fermi level (V = 0 V). On the other hand, DyPc, YPc and MPc2 exhibited no Kondo peak. In order to understand the observed Kondo effect, the energy splitting of sublevels in a crystal field should be taken into consideration. As the next step in our studies on the SMM/Kondo effect in Tb-Pc derivatives, we investigated the electronic transport properties of Ln-Pc molecules as the active layer in top- and bottom-contact thin-film organic field effect transistor (OFETs) devices. Tb-Pc molecule devices exhibit p-type semiconducting properties with a hole mobility (μH) of ∼10−4 cm2 V−1 s−1. Interestingly, the Dy-Pc based devices exhibited ambipolar semiconducting properties with an electron mobility (μe) of ∼10−5 and a hole mobility (μH) of ∼10−4 cm2 V−1 s−1. This behavior has important implications for the electronic structure of the molecules.
         
            
                 
             
                     
                    
                        
                            
                                You have access to this article
                            
                            
                                
                                    
                                        
                                             Please wait while we load your content...
                                        
                                        
                                            Something went wrong. Try again?
                                            Please wait while we load your content...
                                        
                                        
                                            Something went wrong. Try again?