Issue 29, 2010

Rotational study of carbon monoxide isotopologues in small 4Heclusters

Abstract

High resolution microwave (a-type) and millimetre-wave (b-type) spectra of HeN13C16O, HeN12C18O, and HeN13C18O clusters (N ≤ 10) were observed, significantly extending the initial spectroscopic observations on HeN12C16O by Surin et al. [Phys. Rev. Lett., 2008, 101, 233401]. The frequencies of the a-type series, which evolves from the end-over-end rotation of the dimer, decrease from N = 1 to 3, then increase smoothly to at least N = 9. This turnaround indicates a rapid evolution of the solvation character from classical to quantum. The b-type series, which evolves from the free molecule rotation of CO, increases from N = 0 to 6 and then decreases to at least N = 10. This is consistent with an initially increasing anisotropy of the helium environment, followed by a tendency of the solvation shell to become more isotropic. The shift of the vibrational frequency of CO as determined from the infrared [A. R. W. McKellar, J. Chem. Phys., 2004, 121, 6868; ibid., 2006, 125, 164328] and microwave data reveals an approximately linear decrease from N = 1 to at least 9. If the linear shift were to continue until completion of the first solvation shell (N ≈ 14), the estimated helium nanodroplet shift will be well undershot [K. von Haeften, S. Rudolph, I. Simanovski, M. Havenith, R. E. Zillich and K. B. Whaley, Phys. Rev. B: Condens. Matter Mater. Phys., 2006, 73, 054502]. In this case, there must be an upturn in the vibrational shift beyond N = 14, which is not predicted by theory [T. Škrbić, S. Moroni and S. Baroni, J. Phys. Chem. A, 2007, 111, 7640]. By extrapolating the a-type series to N = 14 (assuming a linear vibrational shift), we estimate the rotational constant, B, of CO in the helium nanodroplet to be ∼74% of its gas phase value. This is in reasonable agreement with simulations (76% at N = 14), which predict the limiting value to be approximately reached upon completion of the first solvation shell (73% at N = 100) [T. Škrbić, S. Moroni and S. Baroni, J. Phys. Chem. A, 2007, 111, 7640]. However, this value is significantly larger than that inferred from helium nanodroplet experiments (63%).

Graphical abstract: Rotational study of carbon monoxide isotopologues in small 4He clusters

Article information

Article type
Paper
Submitted
12 Apr 2010
Accepted
15 May 2010
First published
01 Jun 2010

Phys. Chem. Chem. Phys., 2010,12, 8260-8267

Rotational study of carbon monoxide isotopologues in small 4He clusters

P. L. Raston, Y. Xu, W. Jäger, A. V. Potapov, L. A. Surin, B. S. Dumesh and S. Schlemmer, Phys. Chem. Chem. Phys., 2010, 12, 8260 DOI: 10.1039/C0CP00193G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements