Jump to main content
Jump to site search

Issue 6, 2010
Previous Article Next Article

Upscaling of polymer solar cell fabrication using full roll-to-roll processing

Author affiliations


Upscaling of the manufacture of polymer solar cells is detailed with emphasis on cost analysis and practical approach. The device modules were prepared using both slot-die coating and screen printing the active layers in the form of stripes that were serially connected. The stripe width was varied and the resultant performance analysed. Wider stripes give access to higher geometric fill factors and lower aperture loss while they also present larger sheet resistive losses. An optimum was found through preparation of serially connected stripes having widths of 9, 13 and 18 mm with nominal geometric fill factors (excluding bus bars) of 50, 67 and 75% respectively. In addition modules with lengths of 6, 10, 20, 22.5 and 25 cm were explored. The devices were prepared by full roll-to-roll solution processing in a web width of 305 mm and roll lengths of up to 200 m. The devices were encapsulated with a barrier material in a full roll-to-roll process using standard adhesives giving the devices excellent stability during storage and operation. The total area of processed polymer solar cell was around 60 m2 per run. The solar cells were characterised using a roll-to-roll system comprising a solar simulator and an IV-curve tracer. After characterisation the solar cell modules were cut into sheets using a sheeting machine and contacted using button contacts applied by crimping. Based on this a detailed cost analysis was made showing that it is possible to prepare complete and contacted polymer solar cell modules on this scale at an area cost of 89 € m−2 and an electricity cost of 8.1 € Wp−1. The cost analysis was separated into the manufacturing cost, materials cost and also the capital investment required for setting up a complete production plant on this scale. Even though the cost in € Wp−1 is comparable to the cost for electricity using existing technologies the levelized cost of electricity (LCOE) is expected to be significantly higher than the existing technologies due to the inferior operational lifetime. The presented devices are thus competitive for consumer electronics but ill-suited for on-grid electricity production in their current form.

Graphical abstract: Upscaling of polymer solar cell fabrication using full roll-to-roll processing

Back to tab navigation

Publication details

The article was received on 23 Dec 2009, accepted on 23 Feb 2010 and first published on 04 May 2010

Article type: Feature Article
DOI: 10.1039/B9NR00430K
Nanoscale, 2010,2, 873-886

  •   Request permissions

    Upscaling of polymer solar cell fabrication using full roll-to-roll processing

    F. C. Krebs, T. Tromholt and M. Jørgensen, Nanoscale, 2010, 2, 873
    DOI: 10.1039/B9NR00430K

Search articles by author