Issue 17, 2010

Non-contact acoustic cell trapping in disposable glass capillaries

Abstract

Non-contact trapping using acoustic standing waves has shown promising results in cell-based research lately. However, the devices demonstrated are normally fabricated using microfabrication or precision machining methods leading to a high unit cost. In e.g. clinical or forensic applications avoiding cross-contamination, carryover or infection is of outmost importance. In these applications disposable devices are key elements, thus making the cost per unit a critical factor. A solution is presented here where low-cost off-the-shelf glass capillaries are used as resonators for standing wave trapping. Single-mode as well as multi-node trapping is demonstrated with an excellent agreement between simulated and experimentally found operation frequencies. Single particle trapping is verified at 7.53 MHz with a trapping force on a 10 μm particle of up to 1.27 nN. The non-contact trapping is proved using confocal microscopy. Finally, an application is presented where the capillary is used as a pipette for aspirating, trapping and dispensing red blood cells.

Graphical abstract: Non-contact acoustic cell trapping in disposable glass capillaries

Article information

Article type
Paper
Submitted
22 Mar 2010
Accepted
28 May 2010
First published
30 Jun 2010

Lab Chip, 2010,10, 2251-2257

Non-contact acoustic cell trapping in disposable glass capillaries

B. Hammarström, M. Evander, H. Barbeau, M. Bruzelius, J. Larsson, T. Laurell and J. Nilsson, Lab Chip, 2010, 10, 2251 DOI: 10.1039/C004504G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements