Jump to main content
Jump to site search

Issue 8, 2010
Previous Article Next Article

On-chip determination of spermatozoa concentration using electrical impedance measurements

Author affiliations

Abstract

In this article we describe the development of a microfluidic chip to determine the concentration of spermatozoa in semen, which is a main quality parameter for the fertility of a man. A microfluidic glass-glass chip is used, consisting of a microchannel with a planar electrode pair that allows the detection of spermatozoa passing the electrodes using electrical impedance measurements. Cells other than spermatozoa in semen also cause a change in impedance when passing the electrodes, interfering with the spermatozoa count. We demonstrate that the change in electrical impedance is related to the size of cells passing the electrodes, allowing to distinguish between spermatozoa and HL-60 cells suspended in washing medium. In the same way we are able to distinguish between polystyrene beads and spermatozoa. Thus, by adding a known concentration of polystyrene beads to a boar semen sample, the spermatozoa concentrations of seven mixtures are measured and show a good correlation with the actual concentration (R2-value = 0.97). To our knowledge this is the first time that the concentration of spermatozoa has been determined on chip using electrical impedance measurements without a need to know the actual flow speed. The proposed method to determine the concentration can be easily applied to other cells. The described on-chip determination of the spermatozoa concentration is a first step towards a microfluidic system for a complete quality analysis of semen.

Graphical abstract: On-chip determination of spermatozoa concentration using electrical impedance measurements

Back to tab navigation

Article information


Submitted
16 Nov 2009
Accepted
07 Jan 2010
First published
04 Feb 2010

Lab Chip, 2010,10, 1018-1024
Article type
Paper

On-chip determination of spermatozoa concentration using electrical impedance measurements

L. I. Segerink, A. J. Sprenkels, P. M. ter Braak, I. Vermes and A. van den Berg, Lab Chip, 2010, 10, 1018
DOI: 10.1039/B923970G

Social activity

Search articles by author

Spotlight

Advertisements