Issue 1, 2010

New insights into F-pilus structure, dynamics, and function


F-pili are thin, flexible filaments elaborated by F+ cells of Escherichia coli. They belong to the class of Gram-negative pili that function in horizontal gene transfer. F-pili are initially required to establish contacts between DNA donor and recipient cells. Beyond that, F-pilus function, and that of other conjugative pili, has remained obscure and controversial. The idea that F-pili are dynamic structures was proposed 40 years ago. Initially, F-pili were thought to remain extended until another cell bound to the filament tip, whereupon the filament retracted to bring the contacted cell to the donor cell surface. Thereafter, secure surface–surface contacts would allow efficient DNA transfer. A later variant of this hypothesis was that F-pili are inherently dynamic, elongating and retracting even in the absence of exogenous signals. A very different hypothesis, also proposed first about 40 years ago, was that F-pili are conduits, presumably passive, for the transfer of DNA from donor to recipient. In this hypothesis, DNA transfer is not obligatorily coupled to F-pilus retraction. Here, we review recent data obtained by integrating long-established facts about the biology of F-pili with modern tools of fluorescence and electron microscopy. These data suggest that one function for F-pili is to search a large volume around donor cells in liquid culture for the presence of other cells. However, this may not be the only function. We show that F-pilin is also required at a second, largely undefined step occurring after cells have been brought into direct contact by F-pilus retraction.

Graphical abstract: New insights into F-pilus structure, dynamics, and function

Supplementary files

Article information

Article type
28 Aug 2009
04 Nov 2009
First published
03 Dec 2009

Integr. Biol., 2010,2, 25-31