Jump to main content
Jump to site search

Issue 6, 2010
Previous Article Next Article

Production of liquid hydrocarbon transportation fuels by oligomerization of biomass-derived C9 alkenes

Author affiliations

Abstract

A process is described to produce renewable liquid fuels, similar to existing petroleum-derived transportation fuels, through the oligomerization over solid acid catalysts of C9-alkenes derived from γ-valerolactone (GVL). Larger, non-terminal alkenes are shown to be less reactive than short chain α-alkenes for oligomerization over solid acid sites, and Amberlyst-70 has been identified to be an active and stable catalyst with sufficient acidity to couple C9-alkenes. The inhibiting effect of water on alkene oligomerization can be minimized, because C9 alkenes derived from aqueous solutions of GVL separate spontaneously from water. The effect of other impurities arising from the cascade process for production of C9 alkenes from GVL, such as 5-nonanone and 5-nonanol, has been studied. Ketones are shown to be inert, while alcohols readily dehydrate on acid sites, producing an equivalent of water, which inhibits the rate of oligomerization. Small amounts of 5-nonanol present with C9-alkenes (< 1%) have a promotional effect, due to swelling of the catalyst by polar molecules; however, large amounts of 5-nonanol lead to inhibition of oligomerization. Other more reactive alkenes present in C9-alkenes produced from GVL, such as hexene and heptene isomers, compete for acid sites with the nonene feed. These smaller, more reactive alkenes are readily coupled at high conversion. Accordingly, with this process approximately 50 kg of liquid hydrocarbons can be produced from 100 kg of GVL retaining more than 90% of its energy content.

Graphical abstract: Production of liquid hydrocarbon transportation fuels by oligomerization of biomass-derived C9 alkenes

Back to tab navigation

Article information


Submitted
28 Jan 2010
Accepted
22 Mar 2010
First published
26 Apr 2010

Green Chem., 2010,12, 992-999
Article type
Paper

Production of liquid hydrocarbon transportation fuels by oligomerization of biomass-derived C9 alkenes

D. M. Alonso, J. Q. Bond, J. C. Serrano-Ruiz and J. A. Dumesic, Green Chem., 2010, 12, 992 DOI: 10.1039/C001899F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.


Social activity

Search articles by author

Spotlight

Advertisements