Jump to main content
Jump to site search

Issue 5, 2010
Previous Article Next Article

Enzyme-based logic systems for information processing

Author affiliations

Abstract

In this critical review we review enzymatic systems which involve biocatalytic reactions utilized for information processing (biocomputing). Extensive ongoing research in biocomputing, mimicking Boolean logic gates has been motivated by potential applications in biotechnology and medicine. Furthermore, novel sensor concepts have been contemplated with multiple inputs processed biochemically before the final output is coupled to transducing “smart-material” electrodes and other systems. These applications have warranted recent emphasis on networking of biocomputing gates. First few-gate networks have been experimentally realized, including coupling, for instance, to signal-responsive electrodes for signal readout. In order to achieve scalable, stable network design and functioning, considerations of noise propagation and control have been initiated as a new research direction. Optimization of single enzyme-based gates for avoiding analog noise amplification has been explored, as were certain network-optimization concepts. We review and exemplify these developments, as well as offer an outlook for possible future research foci. The latter include design and uses of non-Boolean network elements, e.g., filters, as well as other developments motivated by potential novel sensor and biotechnology applications (136 references).

Graphical abstract: Enzyme-based logic systems for information processing

Back to tab navigation

Article information


Submitted
02 Oct 2009
First published
09 Mar 2010

Chem. Soc. Rev., 2010,39, 1835-1857
Article type
Critical Review

Enzyme-based logic systems for information processing

E. Katz and V. Privman, Chem. Soc. Rev., 2010, 39, 1835 DOI: 10.1039/B806038J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.


Social activity

Search articles by author

Spotlight

Advertisements