Issue 39, 2010

Computational screening of metal–organic frameworks for large-molecule chemical sensing

Abstract

Grand canonical Monte Carlo simulations were performed to identify trends in low-pressure adsorption of a broad range of organic molecules by a set of metal–organic frameworks (MOFs). While previous simulation studies focused on the adsorption of small molecules such as carbon dioxide and methane, we consider more complicated organic molecules relevant to chemical sensing and detection: small aromatics (o-, m-, and p-xylene), polycyclic aromatic hydrocarbons (naphthalene, anthracene, phenanthrene), explosives (TNT and RDX), and chemical warfare agents (GA and VM). The framework materials include several Zn-IRMOFs (IRMOFs 1–3, 7, 8), a Cr-MOF (CrMIL-53lp), and a Cu-MOF (HKUST-1). A wide range of loading pressures is examined, extending from 100 ppm to 10 ppb in air, thus spanning the entire range of conditions relevant to chemical sensing for security, environmental, and industrial process monitoring. Our results are validated by comparing calculated adsorption energies with experimental values, where available. Many of the larger organics are significantly adsorbed by the target MOFs at low pressure, which is consistent with the high isosteric heats of adsorption (12 kcal mol−1–49 kcal mol−1) computed for these analytes. These adsorption energies are significantly large that interference from atmospheric components should not interfere with chemical detection at low pressures. We show that pi–pi stacking interactions are an important contributor to these high heats of adsorption. CrMIL-53lp shows the highest adsorption energy for all analytes, suggesting that this material may be suitable for detection of low-level organics. At higher loading pressures, the Zn-MOFs show a much higher volumetric uptake than either CrMIL-53lp or HKUST-1 for all types of analyte considered here. Within the Zn-IRMOF series, analyte loading is proportional to accessible free volume, and loading decreases with increasing analyte size due to molecular packing effects. Overall, the results demonstrate that atomistic simulation can be used as an efficient first step in the screening of MOFs for detection of large molecules. For example, at the 10 ppb level, all of the Zn-IRMOFs are able to distinguish between TNT and the structurally similar xylenes.

Graphical abstract: Computational screening of metal–organic frameworks for large-molecule chemical sensing

Supplementary files

Article information

Article type
Paper
Submitted
31 Mar 2010
Accepted
29 Jun 2010
First published
23 Aug 2010

Phys. Chem. Chem. Phys., 2010,12, 12621-12629

Computational screening of metal–organic frameworks for large-molecule chemical sensing

J. A. Greathouse, N. W. Ockwig, L. J. Criscenti, T. R. Guilinger, P. Pohl and M. D. Allendorf, Phys. Chem. Chem. Phys., 2010, 12, 12621 DOI: 10.1039/C0CP00092B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements