Issue 37, 2010

Proton transport in choline dihydrogen phosphate/H3PO4 mixtures

Abstract

Mixtures of the plastic crystal material choline dihydrogen phosphate [Choline][DHP] and phosphoric acid, from 4.5 mol% to 18 mol% H3PO4, were investigated and shown to have significantly higher proton conductivity compared to the pure [Choline][DHP]. This was particularly evident from the electrochemical hydrogen reduction reaction and the proton NMR diffusion measurements, in addition to ionic conductivity measured from the impedance spectroscopy. The ionic conductivity was observed to increase by more than an order of magnitude in phase I (i.e. the highest temperature solid phase in [Choline][DHP]) reaching up to 10−2 S cm−1. The multinuclear NMR spectroscopy data suggest that, at least on the timescale of the NMR measurement, the H+ cations and [DHP] anions are equivalent in both phases. The pulsed field gradient NMR diffusion measurements of the 18 mol% acid sample indicate that all three ions are mobile, however the H+ diffusion coefficient is an order of magnitude higher than for the [Choline] cation or the [DHP] anion, and therefore conduction in these materials is dominated by proton conductivity. The thermal stability, as measured by TGA, is unaffected with increasing acid additions and remains high; i.e. no significant mass loss below 200 °C.

Graphical abstract: Proton transport in choline dihydrogen phosphate/H3PO4 mixtures

Article information

Article type
Paper
Submitted
08 Apr 2010
Accepted
18 Jun 2010
First published
02 Aug 2010

Phys. Chem. Chem. Phys., 2010,12, 11291-11298

Proton transport in choline dihydrogen phosphate/H3PO4 mixtures

U. A. Rana, P. M. Bayley, R. Vijayaraghavan, P. Howlett, D. R. MacFarlane and M. Forsyth, Phys. Chem. Chem. Phys., 2010, 12, 11291 DOI: 10.1039/C0CP00156B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements