Issue 17, 2009

Effect of pressure on membranes

Abstract

Besides temperature, hydrostatic pressure has been used as a physical-chemical parameter for studying the energetics and phase behavior of membrane systems. First we review some theoretical aspects of lipid self-assembly. Then, the temperature and pressure dependent structure and phase behavior of lipid bilayers, differing in chain configuration, headgroup structure and composition as revealed by using thermodynamic, spectroscopic and scattering experiments is discussed. We also report on the lateral organization of phase-separated lipid membranes and model raft mixtures as well as the influence of peptide and protein incorporation on membrane structure and dynamics upon pressurization. Also the effect of other additives, such as ions, cholesterol, and anaesthetics is discussed. Furthermore, we introduce pressure as a kinetic variable. Applying the pressure-jump relaxation technique in combination with time-resolved synchrotron X-ray diffraction, the kinetics of various lipid phase transformations was investigated. Finally, also new data on pressure effects on membrane mimetics, such as surfactants and microemulsions, are presented.

Graphical abstract: Effect of pressure on membranes

Article information

Article type
Review Article
Submitted
26 Jan 2009
Accepted
27 Mar 2009
First published
07 May 2009

Soft Matter, 2009,5, 3157-3173

Effect of pressure on membranes

R. Winter and C. Jeworrek, Soft Matter, 2009, 5, 3157 DOI: 10.1039/B901690B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements