Issue 10, 2009

Photoinduced electron transfer in a fullerene–oligophenylenevinylene dyad

Abstract

A dialkylamino-subtituted oligophenylenevinylene (OPV) derivative bearing a fullerene subunit (F–D) has been prepared. The electrochemical properties of F–D have been investigated by cyclic voltammetry. Whereas the first reduction is centered on the C60 unit, the oxidation is centered on the dialkylamino subunit of the OPV rod. In F–D, both the OPV and the fullerene-centered fluorescence bands are quenched and this suggests the presence of photoinduced electron transfer from the amino-substituted OPV to the carbon sphere. By means of bimolecular quenching experiments, transient absorption spectral fingerprints of the radical cationic species have been detected in the VIS (670 nm) and NIR (1300–1500 nm) regions, along with the much weaker fullerene anion band at λmax = 1030 nm. Intramolecular photoinduced electron transfer occurs in the investigated dyad and a relatively long-lived charge-separated state has been detected, with a lifetime of 135 and 85 ns in toluene and benzonitrile, respectively. The longer lifetime in the less polar solvent suggests a Marcus inverted region behavior for the charge recombination process.

Graphical abstract: Photoinduced electron transfer in a fullerene–oligophenylenevinylene dyad

Article information

Article type
Paper
Submitted
12 Jun 2009
Accepted
17 Jul 2009
First published
26 Aug 2009

New J. Chem., 2009,33, 2174-2182

Photoinduced electron transfer in a fullerene–oligophenylenevinylene dyad

A. Gégout, J. L. Delgado, J. Nierengarten, B. Delavaux-Nicot, A. Listorti, C. Chiorboli, A. Belbakra and N. Armaroli, New J. Chem., 2009, 33, 2174 DOI: 10.1039/B9NJ00259F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements