Issue 18, 2009

Active pixel sensor array for high spatio-temporal resolution electrophysiological recordings from single cell to large scale neuronal networks

Abstract

This paper presents a chip-based electrophysiological platform enabling the study of micro- and macro-circuitry in in-vitro neuronal preparations. The approach is based on a 64 × 64 microelectrode array device providing extracellular electrophysiological activity recordings with high spatial (21 µm of electrode separation) and temporal resolution (from 0.13 ms for 4096 microelectrodes down to 8 µs for 64 microelectrodes). Applied to in-vitro neuronal preparations, we show how this approach enables neuronal signals to be acquired for investigating neuronal activity from single cells and microcircuits to large scale neuronal networks. The main elements of the platform are the metallic microelectrode array (MEA) implemented in Complementary Metal Oxide Semiconductor (CMOS) technology similar to a light imager, the in-pixel integrated low-noise amplifiers (11 µVrms) and the high-speed random addressing logic. The chip is combined with a real-time acquisition system providing the capability to record at 7.8 kHz/electrode the whole array and to process the acquired signals.

Graphical abstract: Active pixel sensor array for high spatio-temporal resolution electrophysiological recordings from single cell to large scale neuronal networks

Supplementary files

Article information

Article type
Paper
Submitted
14 Apr 2009
Accepted
01 Jul 2009
First published
15 Jul 2009

Lab Chip, 2009,9, 2644-2651

Active pixel sensor array for high spatio-temporal resolution electrophysiological recordings from single cell to large scale neuronal networks

L. Berdondini, K. Imfeld, A. Maccione, M. Tedesco, S. Neukom, M. Koudelka-Hep and S. Martinoia, Lab Chip, 2009, 9, 2644 DOI: 10.1039/B907394A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements