Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.

Issue 19, 2009
Previous Article Next Article

Low cost and manufacturable complete microTAS for detecting bacteria

Author affiliations


In this paper, we present a fully integrated lab-on-a-chip and associated instrument for the detection of bacteria from liquid samples. The system conducts bacterial lysis, nucleic acid isolation and concentration, polymerase chain reaction (PCR), and end-point fluorescent detection. To enable truly low-cost manufacture of the single-use disposable chip, we designed the plastic chip in a planar format without any active components to be amenable to injection molding and utilized a novel porous polymer monolith (PPM) embedded with silica that has been shown to lyse bacteria and isolate the nucleic acids from clinical samples (M. D. Kulinski, M. Mahalanabis, S. Gillers, J. Y. Zhang, S. Singh and C. M. Klapperich, Biomed. Microdevices, 2009, 11, 671–678).1 The chip is made of Zeonex®, a thermoplastic with a high melting temperature to allow PCR, good UV transmissibility for UV-curing of the PPM, and low auto-fluorescence for fluorescence detection of the amplicon. We have built a prototype instrument to automate control of the fluids, temperature cycling, and optical detection with the capability of accommodating various chip designs. To enable fluid control without including valves or pumps on the chip, we utilized a remote valve switching technique. To allow fluid flow rate changes on the valveless chip, we incorporated speed changing fluid reservoirs. The PCR thermal cycling was achieved with a ceramic heater and air cooling, while end-point fluorescence detection was accomplished with an optical spectrometer; all integrated in the instrument. The chip seamlessly and automatically is mated to the instrument through an interface block that presses against the chip. The interface block aligns and ensures good contact of the chip to the temperature controlled region and the optics. The integrated functionality of the chip was demonstrated using Bacillus subtilis as a model bacterial target. A Taqman assay was employed on-chip to detect the isolated bacterial DNA.

Graphical abstract: Low cost and manufacturable complete microTAS for detecting bacteria

Back to tab navigation

Supplementary files

Article information

11 Mar 2009
08 Jun 2009
First published
29 Jun 2009

Lab Chip, 2009,9, 2803-2810
Article type

Low cost and manufacturable complete microTAS for detecting bacteria

A. F. Sauer-Budge, P. Mirer, A. Chatterjee, C. M. Klapperich, D. Chargin and A. Sharon, Lab Chip, 2009, 9, 2803
DOI: 10.1039/B904854E

Social activity

Search articles by author