Issue 6, 2009

Lensfree holographic imaging for on-chip cytometry and diagnostics

Abstract

We experimentally illustrate a lensfree holographic imaging platform to perform on-chip cytometry. By controlling the spatial coherence of the illumination source, we record a 2D holographic diffraction pattern of each cell or micro-particle on a chip using a high resolution sensor array that has ∼2 µm pixel size. The recorded holographic image is then processed by using a custom developed decision algorithm for matching the detected hologram texture to existing library images for on-chip characterization and counting of a heterogeneous solution of interest. The holographic diffraction signature of any microscopic object is significantly different from the classical diffraction pattern of the same object. It improves the signal to noise ratio and the signature uniformity of the cell patterns; and also exhibits much better sensitivity for on-chip imaging of weakly scattering phase objects such as small bacteria or cells. We verify significantly improved performance of this holographic on-chip cytometry approach by automatically characterizing heterogeneous solutions of red blood cells, yeast cells, E. coli and various sized micro-particles without the use of any lenses or microscope objectives. This lensless on-chip holography platform will especially be useful for point-of-care cytometry and diagnostics applications involving e.g., infectious diseases such as HIV or malaria.

Graphical abstract: Lensfree holographic imaging for on-chip cytometry and diagnostics

Supplementary files

Article information

Article type
Paper
Submitted
11 Aug 2008
Accepted
30 Oct 2008
First published
05 Dec 2008

Lab Chip, 2009,9, 777-787

Lensfree holographic imaging for on-chip cytometry and diagnostics

S. Seo, T. Su, D. K. Tseng, A. Erlinger and A. Ozcan, Lab Chip, 2009, 9, 777 DOI: 10.1039/B813943A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements