Issue 7, 2009

The deformation of flexible PDMS microchannels under a pressure driven flow

Abstract

Poly(dimethylsiloxane) (PDMS) microchannels are commonly used microfluidic structures that have a wide variety of biological testing applications, including the simulation of blood vessels to study the mechanics of vascular disease. In these studies in particular, the deformation of the channel due to the pressure inside is a critical parameter. We describe a method for using fluorescence microscopy to quantify the deformation of such channels under pressure driven flow. Additionally, the relationship between wall thickness and channel deformation is investigated. PDMS microchannels of varying top wall thickness were created using a soft lithography process. A solution of fluorescent dye is pumped through the channels at constant volume flow rates and illuminated. Pressure and fluorescence intensity are measured at five positions along the length of the channel. Fluorescence measurements are then used to determine deformation, using the linear relationship of dye layer thickness and intensity. A linear relationship between pressure and microchannel deformation is measured. Pressure drops and deformations closely correspond to values predicted by the model in most cases. Additionally, measured pressure drops are found to be up to 35% less than the pressure drop in a rigid-walled channel, and channel wall thickness is found to have an increasing effect as the channel wall thickness decreases.

Graphical abstract: The deformation of flexible PDMS microchannels under a pressure driven flow

Article information

Article type
Paper
Submitted
29 Jul 2008
Accepted
28 Nov 2008
First published
19 Dec 2008

Lab Chip, 2009,9, 935-938

The deformation of flexible PDMS microchannels under a pressure driven flow

B. S. Hardy, K. Uechi, J. Zhen and H. Pirouz Kavehpour, Lab Chip, 2009, 9, 935 DOI: 10.1039/B813061B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements