Issue 44, 2009

Superparamagnetic iron oxide nanoparticles coated with a folate-conjugated polymer

Abstract

Folate-functionalized magnetic fluids were prepared by direct chemisorption of a folate-tetra(ethylene glycol)-poly(glycerol monoacrylate) (FA-TEG-PGA) conjugate on Fe3O4nanoparticles. In the magnetic fluids, the PGA block of FA-TEG-PGA was chemisorbed onto the Fe3O4nanoparticle surface through its 1,2-diol groups, while the TEG chain conjugated with FA extended into the water matrix. Characterization by transmission electron microscopy, X-ray diffraction and a vibrating sample magnetometer indicated that the pure Fe3O4 superparamagnetic nanoparticles were formed and the coating process did not significantly affect the size and structure of Fe3O4nanoparticles. Fourier transform infrared spectroscopy, UV-vis spectroscopy, thermogravimetric analysis and X-ray photoelectron spectroscopy confirmed the successful coating of FA-TEG-PGA on the Fe3O4nanoparticles, suggested a coating mechanism for the FA-TEG-PGA, and revealed the maximum weight ratio of FA-TEG-PGA to Fe3O4. The dispersion of FA-TEG-PGA-coated Fe3O4nanoparticles possessed excellent stability over a wide range of pH and salt concentrations. Such folate-functionalized magnetic fluids are expected to be targeting contrast agents for magnetic resonance imaging (MRI) applications. This approach represents a new strategy to synthesize functionalized magnetic nanoparticles that form stable dispersions in water and facilitates potential biomedical applications of these magnetic nanoparticles.

Graphical abstract: Superparamagnetic iron oxide nanoparticles coated with a folate-conjugated polymer

Supplementary files

Article information

Article type
Paper
Submitted
27 May 2009
Accepted
09 Sep 2009
First published
30 Sep 2009

J. Mater. Chem., 2009,19, 8393-8402

Superparamagnetic iron oxide nanoparticles coated with a folate-conjugated polymer

Q. Zhang, C. Wang, L. Qiao, H. Yan and K. Liu, J. Mater. Chem., 2009, 19, 8393 DOI: 10.1039/B910439A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements