Issue 21, 2009

New selenophene-based semiconducting copolymers for high performance organic thin-film transistors

Abstract

A series of new selenophene-based organic semiconducting copolymers, poly(5,5′-bis(3-dodecylthiophen-2-yl)-2,2′-biselenophene) (PDT2Se2) and poly(5,5′-bis(4,4′-didodecyl-2,2′-bithiophen-5-yl)-2,2′-biselenophene) (PDT4Se2), were successfully synthesized by Stille and oxidative coupling reactions. Our aim was to investigate the effects of the selenophene units and inserted dodecylthiophenes on the optical and electrochemical properties of these copolymers, their intermolecular ordering in the film state, and hence their thin-film transistor (TFT) performance. X-ray-diffraction (GIXRD and XRD) and theoretical calculations for models of these polymers were used to show that PDT2Se2 films have well organized interlayer packing and π–π stacking, whereas the films of PDT4Se2, which contain regioregularly inserted additional dodecylthiophenes next to the repeat units of PDT2Se2, have a long-range amorphous structure. The TFT characteristics of these polymers are strongly dependent on the intermolecular ordering of the polymer chains. PDT2Se2 exhibited a high hole transporting mobility of 0.02 cm2V−1 s−1 due to its excellent intermolecular ordering, whereas PDT4Se2 exhibited a very poor mobility of 1.4 × 10−5 cm2V−1 s−1 due to its amorphous characteristics, which result from the repulsion between the additional dodecylthiophenes. These results confirm that it is important to consider intermolecular ordering in the design of semiconducting materials for high performance OTFTs.

Graphical abstract: New selenophene-based semiconducting copolymers for high performance organic thin-film transistors

Supplementary files

Article information

Article type
Paper
Submitted
24 Dec 2008
Accepted
09 Mar 2009
First published
09 Apr 2009

J. Mater. Chem., 2009,19, 3490-3499

New selenophene-based semiconducting copolymers for high performance organic thin-film transistors

H. Kong, D. S. Chung, I. Kang, J. Park, M. Park, I. H. Jung, C. E. Park and H. Shim, J. Mater. Chem., 2009, 19, 3490 DOI: 10.1039/B823082J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements