Issue 6, 2009

Precise and accurate isotopic analysis of microscopic uranium-oxide grains using LA-MC-ICP-MS

Abstract

Uranium isotope (235U, 236U, 238U) ratios were determined for microscopic uranium-oxide grains using laser-ablation multi-collector inductively-coupled-plasma mass-spectrometry (LA-MC-ICP-MS). The grains were retrieved from contaminated soil and dust samples. The analytical technique utilised is rapid, requires minimal sample preparation, and is well suited for nuclear forensic applications. Precision and accuracy were assessed by replicate analyses of natural uraninite grains: relative uncertainty for 235U/238U is 0.2% (2σ), and the mean is in agreement with the natural ratio. A total of 115 uranium-oxide grains were analysed from environmental samples (soils and dusts); all of these were depleted uranium (DU) from a factory that produced uranium articles. Knowledge of the range of isotope ratios from particles of this controversial contaminant has proven useful when interpreting isotope ratios from bulk samples. Variation of the measured isotope signatures reveals details of the history of uranium processing and emissions.

Graphical abstract: Precise and accurate isotopic analysis of microscopic uranium-oxide grains using LA-MC-ICP-MS

Supplementary files

Article information

Article type
Paper
Submitted
31 Oct 2008
Accepted
03 Feb 2009
First published
27 Feb 2009

J. Anal. At. Spectrom., 2009,24, 752-758

Precise and accurate isotopic analysis of microscopic uranium-oxide grains using LA-MC-ICP-MS

N. S. Lloyd, R. R. Parrish, M. S. A. Horstwood and S. R. N. Chenery, J. Anal. At. Spectrom., 2009, 24, 752 DOI: 10.1039/B819373H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements