Jump to main content
Jump to site search

Issue 2, 2009
Previous Article Next Article

The evolution of chemotaxis assays from static models to physiologically relevant platforms

Author affiliations


The role of chemotactic gradients in the immunological response is an area which elicits a lot of attention due to its impact on the outcome of the inflammatory process. Consequently there are numerous standard in vitro designs which attempt to mimic chemotactic gradients, albeit in static conditions, and with no control over the concentration of the chemokine gradient. In recent times the design of the standard chemotaxis assay has incorporated modern microfluidic platforms, computer controlled flow devices and cell tracking software. Assays under fluid flow which use biochips have provided data which highlight the importance of shear stress on cell attachment and migration towards a chemokine gradient. However, the in vivo environment is far more complex in comparison to conventional cell assay chambers. The designs of biochips are therefore in constant flux as advances in technology permit ever greater imitations of in vivo conditions. Researchers are focused on designing a generation of new biochips and enhancing the physiological relevance of the current assays. The challenge is to combine a shear flow with a 3D scaffold containing the endothelial layer and permitting a natural diffusion of chemokines through a tissue-like basal matrix. Here we review the latest range of chemotaxis assays and assess the innovative features of their designs which enable them to better imitate the in vivo environment. We also present some alternative designs that were initially employed in tissue engineering which could potentially be used in the establishment of novel chemotaxis assays.

Graphical abstract: The evolution of chemotaxis assays from static models to physiologically relevant platforms

Back to tab navigation

Publication details

The article was received on 21 Aug 2008, accepted on 06 Oct 2008 and first published on 12 Dec 2008

Article type: Critical Review
DOI: 10.1039/B814567A
Integr. Biol., 2009,1, 170-181

Search articles by author