Silica-supported 4-pyrrolidinopyridinium iodide was prepared by quaternization of 4-pyrrolidinopyridine with silica-supported alkyl iodide. The pyrrolidinopyridinium structure on the silica surface was confirmed by solid-state 13C CP MAS NMR. The silica-supported 4-pyrrolidinopyridinium iodide showed excellent catalytic performances for transformations of various epoxides to cyclic carbonates under atmospheric pressure of carbon dioxide (CO2). The reactions took place without any solvents or additives other than the catalyst. The catalyst was reusable with retention of activity and selectivity. 1-n-Hexyl-4-pyrrolidinopyridinium as a homogeneous catalyst showed a lower catalytic performance than the supported catalyst. Bifunctional catalysis involving acidic surface silanol and the basic 4-pyrrolidinopyridinium iodide was proposed.