Screened hybrid density functionals for solid-state chemistry and physics
Abstract
Density functional theory incorporating hybrid exchange–correlation functionals has been extraordinarily successful in providing accurate, computationally tractable treatments of molecular properties. However, conventional hybrid functionals can be problematic for solids. Their nonlocal, Hartree–Fock-like exchange term decays slowly and incorporates unphysical features in metals and narrow-bandgap semiconductors. This article provides an overview of our group’s work on designing hybrid functionals for solids. We focus on the Heyd–Scuseria–Ernzerhof screened hybrid functional [J. Chem. Phys. 2003, 118, 8207], its applications to the chemistry and physics of solids and surfaces, and our efforts to build upon its successes.