Issue 12, 2009

Grain boundary pinning in doped hard sphere crystals

Abstract

Direct visual observations on how grain boundaries are pinned between multiple large spherical impurities during colloidal hard sphere crystallisation are presented. The fluid is stabilized between impurities and acts as a precursor for grain boundary formation. The range of fluid stabilisation by a single impurity is characterized by the frustration length, which goes through a maximum as a function of the impurity-to-particle size ratio. Grain boundaries are more strongly confined to the area between two impurities as the ratio between the impurity-to-impurity spacing and the combined frustration lengths decreases. Our results identify the key parameters in grain boundary formation in doped systems, which may lead to a better control of the grain boundary density in materials.

Graphical abstract: Grain boundary pinning in doped hard sphere crystals

Article information

Article type
Paper
Submitted
01 Oct 2008
Accepted
05 Jan 2009
First published
19 Feb 2009

Soft Matter, 2009,5, 2448-2452

Grain boundary pinning in doped hard sphere crystals

V. W. A. de Villeneuve, L. Derendorp, D. Verboekend, E. C. M. Vermolen, W. K. Kegel, H. N. W. Lekkerkerker and R. P. A. Dullens, Soft Matter, 2009, 5, 2448 DOI: 10.1039/B817255B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements