Jump to main content
Jump to site search

Issue 7, 2009
Previous Article Next Article

Jamming prokaryotic cell-to-cell communications in a model biofilm

Author affiliations

Abstract

We report on the physical parameters governing prokaryotic cell-to-cell signaling in a model biofilm. The model biofilm is comprised of bacteria that are genetically engineered to transmit and receive quorum-sensing (QS) signals. The model is formed using arrays of time-shared, holographic optical traps in conjunction with microfluidics to precisely position bacteria, and then encapsulated within a hydrogel that mimics the extracellular matrix. Using fluorescent protein reporters functionally linked to QS genes, we assay the intercellular signaling. We find that there isn't a single cell density for which QS-regulated genes are induced or repressed. On the contrary, cell-to-cell signaling is largely governed by diffusion, and is acutely sensitive to mass-transfer to the surroundings and the cell location. These observations are consistent with the view that QS-signals act simply as a probe measuring mixing, flow, or diffusion in the microenvironment of the cell.

Graphical abstract: Jamming prokaryotic cell-to-cell communications in a model biofilm

Back to tab navigation

Supplementary files

Article information


Submitted
17 Jun 2008
Accepted
13 Nov 2008
First published
11 Dec 2008

Lab Chip, 2009,9, 925-934
Article type
Paper

Jamming prokaryotic cell-to-cell communications in a model biofilm

W. Timp, U. Mirsaidov, P. Matsudaira and G. Timp, Lab Chip, 2009, 9, 925
DOI: 10.1039/B810157D

Social activity

Search articles by author

Spotlight

Advertisements