Lite Version|Standard version

To gain access to this content please
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

A recently developed statistical–mechanical model for calculating Kirkwood correlation factors gK in self associating liquids and liquid mixtures has been applied for the simultaneous description of gK derived from dielectric constant data, the molar enthalpy of mixing HEm, and the infrared absorbtion of monomeric alcoholic species as function of the composition in alkanol + CCl4 mixtures. The alkanols are methanol, ethanol, propanol, butan-1-ol, pentan-1-ol, hexan-1-ol, octan-1-ol, sec-butanol, tert-butanol and pentan-3-ol. The majority of parameters involved in the theory are obtained by independent quantum mechanical ab initio calculations of molecular clusters consisting of up to four alcohol molecules. As a consequence only two parameters have to be adjusted freely to each binary system, a third parameter responsible for the non-specific intermolecular dispersion interaction has been adjusted within a limited range of possible values given by physical arguments. Excellent agreement between theory and experimental data for gK, HEm and IR absorbance is obtained covering the whole range of concentration. The theory also rationalizes the temperature dependence of these properties without adjusting further parameters. The Kirkwood correlation factor gK turns out to be a sensitive response to peculiarities of the molecular structure of hydrogen-bonded systems in the condensed liquid state.

Graphical abstract: Application of a new statistical mechanical model for calculating Kirkwood factors in self associating liquid systems to alkanol + CCl4 mixtures

Page: ^ Top