Issue 21, 2008

Methanolysis of 4-bromobenzenediazonium ions. Effects of acidity, [MeOH] and temperature on the formation and decomposition of diazoethers that initiate homolytic dediazoniation

Abstract

We have investigated the effects of solvent composition, acidity and temperature on the dediazoniation of 4-bromobenzenediazonium (4BrBD) ions in MeOHH2O mixtures by employing a combination of spectrometric and chromatographic techniques. The kinetic behaviour is quite complex; in the absence of MeOH, dediazoniations follow first-order kinetics with a half-life t1/2 ≈ 3000 min (T = 45 °C), but addition of small concentrations of MeOH lead to more rapid but non-first-order kinetics, suggestive of a radical mechanism, with t1/2 ≈ 125 min at 25% MeOH. Further increases in the MeOH concentration slow down the rate of dediazoniation and reactions progressively revert to first-order behaviour, and at percentages of MeOH higher than 90%, t1/2 ≈ 1080 min. Analyses of reaction mixtures by HPLC indicate that three main dediazoniation products are formed depending on the particular experimental conditions. These are 4-bromophenol (ArOH), 4-bromoanisole (ArOMe), and bromobenzene (ArH). At acidities (defined as −log[HCl]) < 2, the main dediazoniation products are the substitution products ArOH and ArOMe but, upon decreasing the acidity, the reduction product ArH becomes predominant at the expense of ArOH and ArOMe, indicating that a turnover in the reaction mechanism takes place under acidic conditions. At any given MeOH content, the plot of kobs or t1/2 values against acidity is S-shaped, the inflexion point depending upon the MeOH concentration and the temperature. Similar S-shaped variations are found when plotting the dediazoniation product distribution against the acidity. The acid-dependence of the switch between the homolytic and heterolytic mechanisms suggests the homolytic dediazoniation proceeds via transient diazo ethers. The complex kinetic behaviour can be rationalized by assuming two competitive mechanisms: (i) the spontaneous heterolytic dediazoniation of 4BrBD, and (ii) an O-coupling mechanism in which the MeOH molecules capture ArN2+ to yield a highly unstable Z-adduct which undergoes homolytic fragmentation initiating a radical process. Analyses of the effects of temperature on the equilibrium constant for the formation of the diazo ether and on the rate of splitting of the diazo ether allowed, for the first time, estimation of relevant thermodynamic parameters for the formation of diazo ethers under acidic conditions.

Graphical abstract: Methanolysis of 4-bromobenzenediazonium ions. Effects of acidity, [MeOH] and temperature on the formation and decomposition of diazo ethers that initiate homolytic dediazoniation

Article information

Article type
Paper
Submitted
05 Jun 2008
Accepted
07 Jul 2008
First published
05 Sep 2008

Org. Biomol. Chem., 2008,6, 4004-4011

Methanolysis of 4-bromobenzenediazonium ions. Effects of acidity, [MeOH] and temperature on the formation and decomposition of diazo ethers that initiate homolytic dediazoniation

A. Fernández-Alonso and C. Bravo-Díaz, Org. Biomol. Chem., 2008, 6, 4004 DOI: 10.1039/B809521C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements