Issue 6, 2008

Is vanadium a more versatile target in the activity of primordial life forms than hitherto anticipated?

Abstract

The two predominant forms of vanadium occurring in the geo-, aqua- and biosphere, soluble vanadate(V) and insoluble oxovanadium(IV) (vanadyl), are subject to bacterial activity and transformation. Bacteria belonging to genera such as Shewanella, Pseudomonas and Geobacter can use vanadate as a primary electron acceptor in dissimilation or respiration, an important issue in the context of biomineralisation and soil detoxification. Azotobacter, which can employ vanadium as an essential element in nitrogen fixation, secretes a vanadophore which enables the uptake of vanadium(V). Siderophores secreted by other bacteria competitively (to ferric iron) take up vanadyl and thus interfere with iron supply, resulting in bacteriostasis. The halo-alkaliphilic Thioalkalivibrio nitratireducens possibly uses vanadium as a constituent of an alternative, molybdopterin-free nitrate reductase. Marine macro-algae can generate a variety of halogenated organic compounds by use of vanadate-dependent haloperoxidases, and a molecular vanadium compound, amavadin, from Amanita mushrooms has turned out to be an efficient catalyst in oxidation reactions. The present account is a focused and critical review of the current knowledge of the interplay of bacteria and other primitive forms of life (cyanobacteria, algae, fungi and lichens) with vanadium, with the aim to provide perspectives for applications and further investigations.

Graphical abstract: Is vanadium a more versatile target in the activity of primordial life forms than hitherto anticipated?

Article information

Article type
Emerging Area
Submitted
13 Nov 2007
Accepted
17 Dec 2007
First published
16 Jan 2008

Org. Biomol. Chem., 2008,6, 957-964

Is vanadium a more versatile target in the activity of primordial life forms than hitherto anticipated?

D. Rehder, Org. Biomol. Chem., 2008, 6, 957 DOI: 10.1039/B717565P

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements