Issue 7, 2008

Stop-flow lithography to generate cell-laden microgel particles

Abstract

Encapsulating cells within hydrogels is important for generating three-dimensional (3D) tissue constructs for drug delivery and tissue engineering. This paper describes, for the first time, the fabrication of large numbers of cell-laden microgel particles using a continuous microfluidic process called stop-flow lithography (SFL). Prepolymer solution containing cells was flowed through a microfluidic device and arrays of individual particles were repeatedly defined using pulses of UV light through a transparency mask. Unlike photolithography, SFL can be used to synthesize microgel particles continuously while maintaining control over particle size, shape and anisotropy. Therefore, SFL may become a useful tool for generating cell-laden microgels for various biomedical applications.

Graphical abstract: Stop-flow lithography to generate cell-laden microgel particles

Article information

Article type
Paper
Submitted
11 Mar 2008
Accepted
24 Apr 2008
First published
22 May 2008

Lab Chip, 2008,8, 1056-1061

Stop-flow lithography to generate cell-laden microgel particles

P. Panda, S. Ali, E. Lo, B. G. Chung, T. A. Hatton, A. Khademhosseini and P. S. Doyle, Lab Chip, 2008, 8, 1056 DOI: 10.1039/B804234A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements