Issue 31, 2008

Highly conductive trimethylsilyl oligo(ethylene oxide) electrolytes for energy storage applications

Abstract

Monomethyl ethers of oligoethylene glycols with different chain lengths were converted to trimethylsilyl derivatives by reacting with trimethylchlorosilane in the presence of triethylamine, or by directly refluxing with excess trimethylchlorosilane or hexamethyldisilazane. Similarly, two oligoethylene glycols were converted to bis(trimethylsilyl) derivatives. When doped with lithium bis(trifluoromethanesulfonyl)imide, these electrolytes have very high conductivity, generally >10−3 S cm−1. A full cell performance test using one of these new electrolytes (1NM3) showed excellent cyclability at room temperature. Introducing a second trimethylsilyl group decreases the conductivity of trimethylsilylated compounds. The thermal properties, viscosities and dielectric constants of the compounds were measured, and the effect of those on the conductivity is reported. Cyclic voltammetry experiments show that the trimethylsilylated compound (1NM2) of diethylene glycol monomethyl ether has greater electrochemical stability than its germanium and carbon analogues.

Graphical abstract: Highly conductive trimethylsilyl oligo(ethylene oxide) electrolytes for energy storage applications

Article information

Article type
Paper
Submitted
14 Apr 2008
Accepted
10 Jun 2008
First published
09 Jul 2008

J. Mater. Chem., 2008,18, 3713-3717

Highly conductive trimethylsilyl oligo(ethylene oxide) electrolytes for energy storage applications

L. Zhang, Z. Zhang, S. Harring, M. Straughan, R. Butorac, Z. Chen, L. Lyons, K. Amine and R. West, J. Mater. Chem., 2008, 18, 3713 DOI: 10.1039/B806290K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements