Issue 20, 2008

Highly efficient high temperature electrolysis

Abstract

High temperature electrolysis of water and steam may provide an efficient, cost effective and environmentally friendly production of H2 using electricity produced from sustainable, non-fossil energy sources. To achieve cost competitive electrolysis cells that are both high performing i.e. minimum internal resistance of the cell, and long-term stable, it is critical to develop electrode materials that are optimal for steam electrolysis. In this article electrolysis cells for electrolysis of water or steam at temperatures above 200 °C for production of H2 are reviewed. High temperature electrolysis is favourable from a thermodynamic point of view, because a part of the required energy can be supplied as thermal heat, and the activation barrier is lowered increasing the H2 production rate. Only two types of cells operating at high temperature (above 200 °C) have been described in the literature, namely alkaline electrolysis cells (AEC) and solid oxide electrolysis cells (SOEC). In the present review emphasis is on state-of-the art electrode materials and development of new materials for SOECs. Based on the state-of-the-art performance for SOECs H2 production by high temperature steam electrolysis using SOECs is competitive to H2 production from fossil fuels at electricity prices below 0.02–0.03 € per kWh. Though promising SOEC results on H2 production have been reported a substantial R&D is still required to obtain inexpensive, high performing and long-term stable electrolysis cells.

Graphical abstract: Highly efficient high temperature electrolysis

Article information

Article type
Feature Article
Submitted
05 Dec 2007
Accepted
03 Jan 2008
First published
31 Jan 2008

J. Mater. Chem., 2008,18, 2331-2340

Highly efficient high temperature electrolysis

A. Hauch, S. D. Ebbesen, S. H. Jensen and M. Mogensen, J. Mater. Chem., 2008, 18, 2331 DOI: 10.1039/B718822F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements