Jump to main content
Jump to site search
SCHEDULED MAINTENANCE Close the message box

Maintenance work is planned for Monday 16 August 2021 from 07:00 to 23:59 (BST).

Website performance may be temporarily affected and you may not be able to access some PDFs or images. If this does happen, refreshing your web browser should resolve the issue. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 1, 2008

Shrinky-Dink microfluidics: rapid generation of deep and rounded patterns

Author affiliations

Abstract

We present a rapid and non-photolithographic approach to microfluidic pattern generation by leveraging the inherent shrinkage properties of biaxially oriented polystyrene thermoplastic sheets. This novel approach yields channels deep enough for mammalian cell assays, with demonstrated heights up to 80 µm. Moreover, we can consistently and easily achieve rounded channels, multi-height channels, and channels as thin as 65 µm in width. Finally, we demonstrate the utility of this simple microfabrication approach by fabricating a functional gradient generator. The whole process—from device design conception to working device—can be completed within minutes.

Graphical abstract: Shrinky-Dink microfluidics: rapid generation of deep and rounded patterns

Article information


Submitted
31 Jul 2007
Accepted
02 Nov 2007
First published
20 Nov 2007

Lab Chip, 2008,8, 170-172
Article type
Technical Note

Shrinky-Dink microfluidics: rapid generation of deep and rounded patterns

A. Grimes, D. N. Breslauer, M. Long, J. Pegan, L. P. Lee and M. Khine, Lab Chip, 2008, 8, 170 DOI: 10.1039/B711622E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.


Social activity

Search articles by author

Spotlight

Advertisements