Issue 16, 2008

Light-emitting iridium complexes with tridentate ligands

Abstract

Once the Cinderella amongst the Platinum Group Metals at the Photochemistry Ball, iridium has become of intense interest since the beginning of the decade. Complexes of iridium(III) can be prepared that are highly luminescent, with emission wavelengths tuneable over the whole of the visible region. Whilst most studies have focused on tris-bidentate complexes, a rich and varied chemistry is also possible using tridentate ligands. In this review, we discuss the synthesis and excited-state properties of such complexes, exploring in particular how the number of cyclometallating carbon atoms in the coordination sphere of the metal ion influences the luminescence. Moving from [IrN6]3+ to [IrN3X3] coordination via [IrN5X]2+ and cis/trans-[IrN4X2]+ complexes, where N is a heterocyclic nitrogen and X is an anionic ligand or cyclometallated carbon, a whole range of luminescence efficiencies are encountered, ranging from the barely detectable to room temperature quantum yields approaching unity. We consider the extent to which these profound differences, arising as a result of subtle changes in molecular structure, can be rationalised in terms of the nature of the frontier orbitals.

Graphical abstract: Light-emitting iridium complexes with tridentate ligands

Article information

Article type
Perspective
Submitted
09 Nov 2007
Accepted
07 Jan 2008
First published
19 Feb 2008

Dalton Trans., 2008, 2081-2099

Light-emitting iridium complexes with tridentate ligands

J. A. G. Williams, A. J. Wilkinson and V. L. Whittle, Dalton Trans., 2008, 2081 DOI: 10.1039/B716743A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements