Issue 34, 2008

Electron transport through carbon nanotube intramolecular heterojunctions with peptide linkages

Abstract

We present a systematic analysis of electron transport characteristics of carbon nanotube (CNT) intramolecular heterojunctions with peptide linkages, MM, SS, SM1, and SM2 where M and S stand for metallic and semiconducting CNT electrodes, respectively. Our theoretical investigations show that the incorporation of peptide linkages and their associated dipole moments play an important role in determining the electron transport characteristics and lead to materials with unique properties, such as Schottky-like behavior. Furthermore, we show that the Schottky-like behavior is observed in our SM1 junction but not in the SM2 junction because of the different effects that arise from both the direction and strength of their dipole moments. We believe that our results will pave the way towards the design and implementation of various electronic logic functions based on carbon nanotubes for applications in the field of nanoelectronics.

Graphical abstract: Electron transport through carbon nanotube intramolecular heterojunctions with peptide linkages

Article information

Article type
Paper
Submitted
18 Feb 2008
Accepted
04 Jun 2008
First published
02 Jul 2008

Phys. Chem. Chem. Phys., 2008,10, 5225-5231

Electron transport through carbon nanotube intramolecular heterojunctions with peptide linkages

S. U. Lee, M. Khazaei, F. Pichierri and Y. Kawazoe, Phys. Chem. Chem. Phys., 2008, 10, 5225 DOI: 10.1039/B802776E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements