Issue 4, 2007

Active 3-D microscaffold system with fluid perfusion for culturing in vitro neuronal networks

Abstract

This work demonstrated the design, fabrication, packaging, and characterization of an active microscaffold system with fluid perfusion/nutrient delivery functionalities for culturing in vitro neuronal networks from dissociated hippocampal rat pup neurons. The active microscaffold consisted of an 8 × 8 array of hollow, microfabricated, SU-8 towers (1.0 mm or 1.5 mm in height), with integrated, horizontal, SU-8 cross-members that connect adjacent towers, thus forming a 3-D grid that is conducive to branching, growth, and increased network formation of dissociated hippocampal neurons. Each microtower in the microscaffold system contained a hollow channel and multiple fluid ports for media delivery and perfusion of nutrients to the in vitro neuronal network growing within the microscaffold system. Additionally, there were two exposed Au electrodes on the outer wall of each microtower at varying heights (with insulated leads running within the microtower walls), which will later allow for integration of electrical stimulation/recording functionalities into the active microscaffold system. However, characterization of the stimulation/recording electrodes was not included in the scope of this paper. Design, fabrication, fluid packaging, and characterization of the active microscaffold system were performed. Furthermore, use of the active microscaffold system was demonstrated by culturing primary hippocampal embryonic rat pup neurons, and characterizing cell viability within the microscaffold system.

Graphical abstract: Active 3-D microscaffold system with fluid perfusion for culturing in vitro neuronal networks

Supplementary files

Article information

Article type
Paper
Submitted
30 Aug 2006
Accepted
07 Feb 2007
First published
01 Mar 2007

Lab Chip, 2007,7, 475-482

Active 3-D microscaffold system with fluid perfusion for culturing in vitro neuronal networks

L. Rowe, M. Almasri, K. Lee, N. Fogleman, G. J. Brewer, Y. Nam, B. C. Wheeler, J. Vukasinovic, A. Glezer and A. B. Frazier, Lab Chip, 2007, 7, 475 DOI: 10.1039/B700795G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements