Issue 15, 2007

A new anode for solid oxidefuel cells with enhanced OCV under methane operation

Abstract

A new SOFC anode material based upon oxygen excess perovskite related phases has been synthesised. The material shows better electrochemical performance than other alternative new anodes and comparable performance to the state-of-art of the electrodes, Ni–YSZ cermets, under pure hydrogen. Furthermore, this material shows an enhanced performance under methane operation with high open circuit voltages, i.e. 1.2–1.4 V at 950 °C, without using steam excess. The effect of the anode configuration was tested in one and four layer configurations. The optimised electrode polarisation resistances were just 0.12 Ω cm2 and 0.36 Ω cm2, at 950 °C, in humidified H2 and humidified CH4, respectively. Power densities of 0.5 W cm−2 and 0.35 W cm−2 were obtained in the same conditions. A very low anodic overpotential of 100 mV at 1 A cm−2 was obtained under humidified H2 at 950 °C. Samples were tested for two days in reducing and oxidising conditions, alternating heating and cooling processes from 850 °C to 950 °C, showing stable electrode performance and open circuit voltages. The results show that the substituted strontium titanates are very promising anode materials for SOFC.

Graphical abstract: A new anode for solid oxide fuel cells with enhanced OCV under methane operation

Article information

Article type
Paper
Submitted
29 Nov 2006
Accepted
16 Feb 2007
First published
21 Mar 2007

Phys. Chem. Chem. Phys., 2007,9, 1821-1830

A new anode for solid oxide fuel cells with enhanced OCV under methane operation

J. C. Ruiz-Morales, J. Canales-Vázquez, C. Savaniu, D. Marrero-López, P. Núñez, W. Zhou and J. T. S. Irvine, Phys. Chem. Chem. Phys., 2007, 9, 1821 DOI: 10.1039/B617266K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements