Jump to main content
Jump to site search

Issue 9, 2007
Previous Article Next Article

Modeling study on the influence of the pressure on a dielectric barrier discharge microplasma

Author affiliations

Abstract

In this paper we present a one-dimensional fluid model to study the properties of very small dielectric barrier discharges (DBD), which can be used as microchip plasma sources for analytical spectrometry. The influence of the pressure on this kind of discharge was investigated to obtain more insight in the variations of discharge current and the differences in particle densities that arise when operating at different pressures. The studied discharge gas is helium and is described with passive He background atoms, He+ and He2+ ions, He metastable atoms, higher excited states of He, He2* excimers and electrons. We show that the plasma activity, expressed in discharge current, is remarkably higher for pressures ranging from 50 to 140 mbar. For most pressures the calculated maximum current density is about 0.1 A cm−2, whereas in the range from 50 to 140 mbar the maximum current density is about 0.3 A cm−2. We also report how the plasma densities alter at different operating pressures, with spatially averaged densities at maximum current ranging from about 1016 m−3 to 1018 m−3, depending on the plasma species, and identify the main underlying processes, which are responsible for these evolutions.

Graphical abstract: Modeling study on the influence of the pressure on a dielectric barrier discharge microplasma

Back to tab navigation

Article information


Submitted
02 Apr 2007
Accepted
06 Jun 2007
First published
22 Jun 2007

J. Anal. At. Spectrom., 2007,22, 1033-1042
Article type
Paper

Modeling study on the influence of the pressure on a dielectric barrier discharge microplasma

T. Martens, A. Bogaerts, W. J. M. Brok and J. J. A. M. van der Mullen, J. Anal. At. Spectrom., 2007, 22, 1033
DOI: 10.1039/B704903J

Social activity

Search articles by author

Spotlight

Advertisements