Quantitative measurement and interpretation of optical second harmonic generation from molecular interfaces
Abstract
Second harmonic generation (SHG) has been proven a uniquely effective technique in the investigation of molecular structure and conformations, as well as dynamics of molecular interfaces. The ability to apply SHG to molecular interface studies depends on the ability to abstract quantitative information from the measurable quantities in the actual SHG experiments. In this review, we try to assess recent developments in the SHG experimental methodologies towards quantitative analysis of the nonlinear optical properties of the achiral molecular interfaces with rotational isotropy along the interface normal. These developments include the methodology for orientational analysis of the SHG experimental data, the experimental approaches for more accurate SHG measurements, and a novel treatment of the symmetry properties of the molecular polarizability tensors in association with the experimentally measurable quantities. In the end, the recent developments on the problem of surface versus bulk contribution in SHG surface studies is discussed. These developments can put SHG on a more solid foundation for molecular interface studies, and to pave the way for better understanding and application of SHG surface studies in general.