Issue 30, 2006

Absorption and scattering microscopy of single metal nanoparticles

Abstract

Several recently developed detection techniques opened studies of individual metal nanoparticles (1–100 nm in diameter) in the optical far field. Eliminating averaging over the broad size and shape distributions produced by even the best of current synthesis methods, these studies hold great promise for gaining a deeper insight into many of the properties of metal nanoparticles, notably electronic and vibrational relaxation. All methods are based on detection of a scattered wave emitted either by the particle itself, or by its close environment. Direct absorption and interference techniques rely on the particle’s scattering and have similar limits in signal-to-noise ratio. The photothermal method uses a photo-induced change in the refractive index of the environment as an additional step to scatter a wave with a different wavelength. This leads to a considerable improvement in signal-to-background ratio, and thus to a much higher sensitivity. We briefly discuss and compare these various techniques, review the new results they generated so far, and conclude on their great potential for nanoscience and for single-molecule labelling in biological assays and live cells.

Graphical abstract: Absorption and scattering microscopy of single metal nanoparticles

Article information

Article type
Invited Article
Submitted
02 May 2006
Accepted
12 Jun 2006
First published
07 Jul 2006

Phys. Chem. Chem. Phys., 2006,8, 3486-3495

Absorption and scattering microscopy of single metal nanoparticles

M. A. van Dijk, A. L. Tchebotareva, M. Orrit, M. Lippitz, S. Berciaud, D. Lasne, L. Cognet and B. Lounis, Phys. Chem. Chem. Phys., 2006, 8, 3486 DOI: 10.1039/B606090K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements