Issue 1, 2006

Dendritic supermolecules – towards controllable nanomaterials

Abstract

Dendritic molecules constitute one of the most exciting areas of modern nanochemistry, largely as a consequence of the unique properties associated with their branched architectures. This article describes how ‘dendritic function’ can also be achieved using small, synthetically accessible branched building blocks (individual dendrons) which simply self-assemble via non-covalent interactions to generate dendritic nanoscale architectures with novel behaviour. (a) Using non-covalent interactions at the focal point of a dendron allows the self-assembly of nanometre-sized supramolecular dendrimers around an appropriate template species. Such systems have potential applications in the controlled encapsulation and release of active ingredients. (b) Employing non-covalent intermolecular dendron–dendron interactions can give rise to the hierarchical assembly of nanostructured materials. Such assemblies of dendritic molecules ultimately express their molecular scale information on a macroscopic scale, and therefore have applications in materials science, for example as gels. (c) The multiple surface groups of dendrons are capable of forming multiple interactions with large surfaces, such as those found on biomolecules or in biological systems. Employing multivalent interactions between dendron surfaces and biological molecules opens up the potential application of dendritic systems as medicinal therapies. In summary, dendritic supermolecules offer a potentially cost-effective approach to the future application of dendritic systems to a range of real-world problems.

Graphical abstract: Dendritic supermolecules – towards controllable nanomaterials

Article information

Article type
Feature Article
Submitted
25 May 2005
Accepted
12 Jul 2005
First published
01 Sep 2005

Chem. Commun., 2006, 34-44

Dendritic supermolecules – towards controllable nanomaterials

D. K. Smith, Chem. Commun., 2006, 34 DOI: 10.1039/B507416A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements