Issue 15, 2006

Solid state 29Si NMR studies of apatite-type oxide ion conductors

Abstract

Apatite-type silicates have been attracting considerable interest as a new class of oxide ion conductor, whose conduction is mediated by interstitial oxide ions. We report here the first 29Si solid state NMR studies of these materials with a systematic investigation of thirteen compositions. Our results indicate a correlation between the silicon environment and the observed conductivity. Specifically, samples which show poor conductivity demonstrate a single NMR resonance, whereas fast ion conducting compositions show more complex NMR spectra. For the oxygen excess samples La9M(SiO4)6O2.5 (M = Ca, Sr, Ba) two peaks are observed at chemical shifts of ≈−77.5 and −80.5 ppm, with the second peak correlated with a silicate group adjacent to an interstitial oxygen site. On Ti doping to give La9M(SiO4)6−x(TiO4)xO2.5 (x = 1,2) the second peak disappears, which is consistent with the “trapping” of interstitial oxygens by Ti and the consequent lowering in oxide ion conductivity. The samples La9.33(SiO4)6O2 and La9.67(SiO4)6O2.5 show a further third weak peak at a chemical shift (≈−85.0 ppm) consistent with the presence of some [Si2O7]6− units in these samples, due to condensation of two [SiO4]4− units. The effect of such condensation of [SiO4]4− units will be the creation of additional interstitial oxide ion defects, i.e. 2 [SiO4]4− → [Si2O7]6− + Oint2−. Overall, the results further highlight the importance of the [SiO4]4− substructure in these materials, and additionally suggest that 29Si NMR could potentially be used to screen apatite silicate materials for oxide ion conductivity

Graphical abstract: Solid state 29Si NMR studies of apatite-type oxide ion conductors

Article information

Article type
Paper
Submitted
05 Jan 2006
Accepted
10 Feb 2006
First published
17 Feb 2006

J. Mater. Chem., 2006,16, 1410-1413

Solid state 29Si NMR studies of apatite-type oxide ion conductors

J. E. H. Sansom, J. R. Tolchard, M. S. Islam, D. Apperley and P. R. Slater, J. Mater. Chem., 2006, 16, 1410 DOI: 10.1039/B600122J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements